Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Xiao-Yang Qiu, ^{a,b} Sen-Lin Yang, ^a Wei-Sheng Liu^{b*} and Hai-Liang Zhu^{c*}

^aDepartment of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, ^bDepartment of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, and ^cInstitute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: liuws@lzu.edu.cn, hailiang zhu@163.com

Key indicators

Single-crystal X-ray study $T=298~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.003~\mathrm{\mathring{A}}$ R factor = 0.053 wR factor = 0.139 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(E)-3-(4-Hydroxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one

In the title compound, $C_{16}H_{14}O_3$, the dihedral angle between the two benzene rings is 25.8 (2)°. Molecules are linked into ribbons through $O-H\cdots O$ —C hydrogen bonds.

Received 30 May 2006 Accepted 14 June 2006

Comment

Recently, we have reported the structures of a few chalcone derivatives (Qiu *et al.*, 2006, 2006*a*), including the analogous chloro derivative (Qiu *et al.*, 2006*b*). As an extension of our work on the structural characterization of chalcone derivatives, the title compound, (I), is reported here.

In (I), all bond lengths are within normal ranges (Allen *et al.*, 1987) (Fig. 1). The C8 \Longrightarrow C9 bond length of 1.328 (3) Å conforms to the value for a C \Longrightarrow C double bond. The dihedral angle between the two benzene rings is 25.8 (2)°. In the crystal structure, molecules are linked through intermolecular O \longrightarrow H \cdots O \Longrightarrow C hydrogen bonds, forming ribbons along the *a*-axis direction (Table 1 and Fig. 2).

Experimental

The reagents were commercial products and were used without further purification. An aqueous solution of potassium hydroxide (5%, 1 ml) was added with stirring overnight to a solution of 4-hydroxybenzaldehyde (1 mmol, 0.12 g) and 4-methoxyacetophenone (1 mmol, 0.15 g) in ethanol (15 ml) at room temperature. The reaction mixture was then poured on to ice and neutralized with aqueous hydrochloric acid (5%). A white solid was prepared after neutralization and obtained from an ethanol solution. The solid (0.05 mmol,

Figure 1

The structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms and the atom-numbering scheme.

© 2006 International Union of Crystallography All rights reserved $0.013~\rm g$) was dissolved in acetone (12 ml) and stirred for about 10 min to give a clear colourless solution. After keeping the solution in air for 9 d, colourless plate-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent. These were collected, washed three times with acetone and dried in a vacuum desiccator using CaCl₂ (yield 53%).

Crystal data

$C_{16}H_{14}O_3$	Z = 8	
$M_r = 254.27$	$D_x = 1.296 \text{ Mg m}^{-3}$	
Orthorhombic, Pbca	Mo $K\alpha$ radiation	
a = 13.3482 (9) Å	$\mu = 0.09 \text{ mm}^{-1}$	
b = 7.6922 (5) Å	T = 298 (2) K	
c = 25.3822 (17) Å	Plate, colourless	
$V = 2606.2 (3) \text{ Å}^3$	$0.34 \times 0.17 \times 0.07 \text{ mm}$	

Data collection

Bruker SMART APEX CCD	14929 measured reflections
diffractometer	2978 independent reflections
ω scans	1485 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.067$
(SADABS; Sheldrick, 1996)	$\theta_{\rm max} = 27.6^{\circ}$
$T_{\min} = 0.978, T_{\max} = 0.986$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.057P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.053$	+ 0.0775P
$wR(F^2) = 0.139$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
2978 reflections	$\Delta \rho_{\text{max}} = 0.14 \text{ e Å}^{-3}$
173 parameters	$\Delta \rho_{\min} = -0.17 \text{ e Å}^{-3}$
H-atom parameters constrained	

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
O3-H13···O1 ⁱ	0.82	1.89	2.651 (2)	154

Symmetry code: (i) $x + \frac{1}{2}, y, -z + \frac{3}{2}$.

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H and O-H distances of 0.93–0.96 and 0.82 Å, respectively, and with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm C,O})$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve

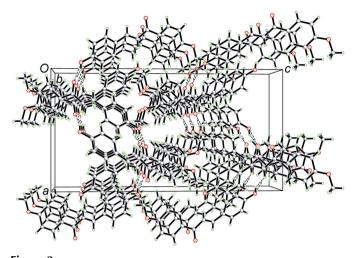


Figure 2 The crystal packing viewed along the b axis, showing the intermolecular $O-H\cdots O$ hydrogen bonds (dashed lines) linking the molecules into ribbons running along a.

structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the Education Office of Anhui Province, China, for research grant No. 2006kj158B, and Fuyang Normal College for research grant No. LQ007.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker. (1998). SMART (Version 5.628) and SAINT (Version 6.02), Bruker AXS Inc., Madison, Wisconsin, USA.

Qiu, X.-Y., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o1304–o1305.
Qiu, X.-Y., Yang, S.-L., Liu, W.-S. & Zhu, H. (2006a). Acta Cryst. E62, o1627–o1628.

Qiu, X.-Y., Yang, S.-L., Liu, W.-S. & Zhu, H.-L. (2006b). Acta Cryst. E62, o2685–o2686.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.